Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
PLoS Pathog ; 20(2): e1012037, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38394338

RESUMO

Mammalian orthoreovirus (MRV) is a prototypic member of the Spinareoviridae family and has ten double-stranded RNA segments. One copy of each segment must be faithfully packaged into the mature virion, and prior literature suggests that nucleotides (nts) at the terminal ends of each gene likely facilitate their packaging. However, little is known about the precise packaging sequences required or how the packaging process is coordinated. Using a novel approach, we have determined that 200 nts at each terminus, inclusive of untranslated regions (UTR) and parts of the open reading frame (ORF), are sufficient for packaging S gene segments (S1-S4) individually and together into replicating virus. Further, we mapped the minimal sequences required for packaging the S1 gene segment into a replicating virus to 25 5' nts and 50 3' nts. The S1 UTRs, while not sufficient, were necessary for efficient packaging, as mutations of the 5' or 3' UTRs led to a complete loss of virus recovery. Using a second novel assay, we determined that 50 5' nts and 50 3' nts of S1 are sufficient to package a non-viral gene segment into MRV. The 5' and 3' termini of the S1 gene are predicted to form a panhandle structure and specific mutations within the stem of the predicted panhandle region led to a significant decrease in viral recovery. Additionally, mutation of six nts that are conserved across the three major serotypes of MRV that are predicted to form an unpaired loop in the S1 3' UTR, led to a complete loss of viral recovery. Overall, our data provide strong experimental proof that MRV packaging signals lie at the terminal ends of the S gene segments and offer support that the sequence requirements for efficient packaging of the S1 segment include a predicted panhandle structure and specific sequences within an unpaired loop in the 3' UTR.


Assuntos
Orthoreovirus de Mamíferos , Animais , Orthoreovirus de Mamíferos/genética , Regiões 3' não Traduzidas/genética , Fases de Leitura Aberta/genética , RNA Viral/genética , Mutação , Genoma Viral , Mamíferos
2.
Microbiol Spectr ; 12(3): e0176223, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38289932

RESUMO

Mammalian orthoreoviruses (MRVs) infect a wide range of hosts, including humans, livestock, and wildlife. In the present study, we isolated a novel Mammalian orthoreovirus from the intestine of a microbat (Myotis aurascens) and investigated its biological and pathological characteristics. Phylogenetic analysis indicated that the new isolate was serotype 2, sharing the segments with those from different hosts. Our results showed that it can infect a wide range of cell lines from different mammalian species, including human, swine, and non-human primate cell lines. Additionally, media containing trypsin, yeast extract, and tryptose phosphate broth promoted virus propagation in primate cell lines and most human cell lines, but not in A549 and porcine cell lines. Mice infected with this strain via the intranasal route, but not via the oral route, exhibited weight loss and respiratory distress. The virus is distributed in a broad range of organs and causes lung damage. In vitro and in vivo experiments also suggested that the new virus could be a neurotropic infectious strain that can infect a neuroblastoma cell line and replicate in the brains of infected mice. Additionally, it caused a delayed immune response, as indicated by the high expression levels of cytokines and chemokines only at 14 days post-infection (dpi). These data provide an important understanding of the genetics and pathogenicity of mammalian orthoreoviruses in bats at risk of spillover infections.IMPORTANCEMammalian orthoreoviruses (MRVs) have a broad range of hosts and can cause serious respiratory and gastroenteritis diseases in humans and livestock. Some strains infect the central nervous system, causing severe encephalitis. In this study, we identified BatMRV2/SNU1/Korea/2021, a reassortment of MRV serotype 2, isolated from bats with broad tissue tropism, including the neurological system. In addition, it has been shown to cause respiratory syndrome in mouse models. The given data will provide more evidence of the risk of mammalian orthoreovirus transmission from wildlife to various animal species and the sources of spillover infections.


Assuntos
Quirópteros , Orthoreovirus de Mamíferos , Camundongos , Animais , Suínos , Orthoreovirus de Mamíferos/genética , Filogenia , Virulência , Animais Selvagens , República da Coreia , Primatas
3.
Virol Sin ; 38(6): 877-888, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931840

RESUMO

Emerging and re-emerging viruses from wild animals have seriously threatened the health of humans and domesticated animals in recent years. Herein, we isolated a new mammalian orthoreovirus (MRV), Pika/MRV/GCCDC7/2019 (PMRV-GCCDC7), in the Qinghai-Tibet Plateau wild pika (Ochotona curzoniae). Though the PMRV-GCCDC7 shows features of a typical reovirus with ten gene segments arranged in 3:3:4 in length, the virus belongs to an independent evolutionary branch compared to other MRVs based on phylogenetic tree analysis. The results of cellular susceptibility, species tropism, and replication kinetics of PMRV-GCCDC7 indicated the virus could infect four human cell lines (A549, Huh7, HCT, and LoVo) and six non-human cell lines, including Vero-E6, LLC-MK2, BHK-21, N2a, MDCK, and RfKT cell, derived from diverse mammals, i.e. monkey, mice, canine and bat, which revealed the potential of PMRV-GCCDC7 to infect a variety of hosts. Infection of BALB/c mice with PMRV-GCCDC7 via intranasal inoculation led to relative weight loss, lung tissue damage and inflammation with the increase of virus titer, but no serious respiratory symptoms and death occurred. The characterization of the new reovirus from a plateau-based wild animal has expanded our knowledge of the host range of MRV and provided insight into its risk of trans-species transmission and zoonotic diseases.


Assuntos
Lagomorpha , Orthoreovirus de Mamíferos , Animais , Cães , Camundongos , Lagomorpha/metabolismo , Orthoreovirus de Mamíferos/genética , Filogenia , Virulência , Animais Selvagens , Genômica
4.
Virology ; 587: 109871, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37634292

RESUMO

Mammalian orthoreovirus (MRV) is an oncolytic virus that has been tested in over 30 clinical trials. Increased clinical success has been achieved when MRV is used in combination with other onco-immunotherapies. This has led the field to explore the creation of recombinant MRVs which incorporate immunotherapeutic sequences into the virus genome. This work focuses on creation and characterization of a recombinant MRV, S1/HER2nhd, which encodes a truncated σ1 protein fused in frame with three human epidermal growth factor receptor 2 (HER2) peptides (E75, AE36, and GP2) known to induce HER2 specific CD8+ and CD4+ T cells. We show S1/HER2nhd expresses the σ1 fusion protein containing HER2 peptides in infected cells and on the virion, and infects, replicates in, and reduces survival of HER2+ breast cancer cells. The oncolytic properties of MRV combined with HER2 peptide expression holds potential as a vaccine to prevent recurrences of HER2 expressing cancers.


Assuntos
Neoplasias , Orthoreovirus de Mamíferos , Animais , Humanos , Orthoreovirus de Mamíferos/genética , Proteínas Recombinantes de Fusão/genética , Peptídeos , Mamíferos
5.
Emerg Microbes Infect ; 12(1): 2208683, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37143369

RESUMO

Pteropine orthoreoviruses (PRVs) are an emerging group of fusogenic, bat-borne viruses from the Orthoreovirus genus. Since the isolation of PRV from a patient with acute respiratory tract infections in 2006, the zoonotic potential of PRV has been further highlighted following subsequent isolation of PRV species from patients in Malaysia, Hong Kong and Indonesia. However, the entry mechanism of PRV is currently unknown. In this study, we investigated the role of previously identified mammalian orthoreovirus (MRV) receptors, sialic acid and junctional adhesion molecule-1 for PRV infection. However, none of these receptors played a significant role in PRV infection, suggesting PRV uses a distinct entry receptor from MRV. Given its broad tissue tropism, we hypothesized that PRV may use a receptor that is widely expressed in all cell types, heparan sulphate (HS). Enzymatic removal of cell surface HS by heparinase treatment and genetic ablation of HS biosynthesis genes, SLC35B2, exostosin-1, N-deacetylase/N-sulfotransferase I and beta-1,3-glucuronyltransferase 3, significantly reduced infection with multiple genetically distinct PRV species. Replication kinetic of PRV3M in HS knockout cells revealed that HS plays a crucial role in the early phase of PRV infection. Mechanistic studies demonstrated that HS is an essential host-factor for PRV attachment and internalization into cells. To our knowledge, this is the first report on the use of HS as an attachment receptor by PRVs.


Assuntos
Orthoreovirus de Mamíferos , Orthoreovirus , Infecções por Reoviridae , Animais , Humanos , Orthoreovirus/genética , Indonésia , Malásia , Orthoreovirus de Mamíferos/genética , Mamíferos
6.
DNA Cell Biol ; 42(6): 289-304, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37015068

RESUMO

Orthoreovirus is a nonenveloped double-stranded RNA virus under the Reoviridae family. This group of viruses, especially mammalian orthoreovirus (MRV), are reported with great therapeutic values due to their oncolytic effects. In this review, the life cycle and oncolytic effect of MRV and a few emerging reoviruses were summarized. This article also highlights the challenges and strategies of utilizing MRV and the emerging reoviruses, avian orthoreovirus (ARV) and pteropine orthoreovirus (PRV), as oncolytic viruses (OVs). Besides, the emergence of potential ARV and PRV as OVs were discussed in comparison to MRV. Finally, the risk of reovirus as zoonosis or reverse zoonosis (zooanthroponosis) were debated, and concerns were raised in this article, which warrant continue surveillance of reovirus (MRV, ARV, and PRV) in animals, humans, and the environment.


Assuntos
Vírus Oncolíticos , Orthoreovirus de Mamíferos , Orthoreovirus , Reoviridae , Animais , Humanos , Orthoreovirus/genética , Reoviridae/genética , Orthoreovirus de Mamíferos/genética , Vírus Oncolíticos/genética , Mamíferos
7.
Infect Genet Evol ; 110: 105421, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36871695

RESUMO

Mammalian orthoreoviruses (reoviruses) are currently classified based on properties of the attachment protein, σ1. Four reovirus serotypes have been identified, three of which are represented by well-studied prototype human reovirus strains. Reoviruses contain ten segments of double-stranded RNA that encode 12 proteins and can reassort during coinfection. To understand the breadth of reovirus genetic diversity and its potential influence on reassortment, the sequence of the entire genome should be considered. While much is known about the prototype strains, a thorough analysis of all ten reovirus genome segment sequences has not previously been conducted. We analyzed phylogenetic relationships and nucleotide sequence conservation for each of the ten segments of more than 60 complete or nearly complete reovirus genome sequences, including those of the prototype strains. Using these relationships, we defined genotypes for each segment, with minimum nucleotide identities of 77-88% for most genotypes that contain several representative sequences. We applied segment genotypes to determine reovirus genome constellations, and we propose implementation of an updated reovirus genome classification system that incorporates genotype information for each segment. For most sequenced reoviruses, segments other than S1, which encodes σ1, cluster into a small number of genotypes and a limited array of genome constellations that do not differ greatly over time or based on animal host. However, a small number of reoviruses, including prototype strain Jones, have constellations in which segment genotypes differ from those of most other sequenced reoviruses. For these reoviruses, there is little evidence of reassortment with the major genotype. Future basic research studies that focus on the most genetically divergent reoviruses may provide new insights into reovirus biology. Analysis of available partial sequences and additional complete reovirus genome sequencing may also reveal reassortment biases, host preferences, or infection outcomes that are based on reovirus genotype.


Assuntos
Orthoreovirus de Mamíferos , Animais , Humanos , Filogenia , Sequência de Bases , Sequência de Aminoácidos , Orthoreovirus de Mamíferos/genética , Genoma Viral , Genótipo , Mamíferos
8.
J Med Virol ; 95(2): e28492, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36633204

RESUMO

Mammalian orthoreovirus (MRV) infects many mammalian species including humans, bats, and domestic animals. To determine the prevalence of MRV in bats in the United States, we screened more than 900 bats of different species collected during 2015-2019 by a real-time reverse-transcription polymerase chain reaction assay; 4.4% bats tested MRV-positive and 13 MRVs were isolated. Sequence and phylogenetic analysis revealed that these isolates belonged to four different strains/genotypes of viruses in Serotypes 1 or 2, which contain genes similar to those of MRVs detected in humans, bats, bovine, and deer. Further characterization showed that these four MRV strains replicated efficiently on human, canine, monkey, ferret, and swine cell lines. The 40/Bat/USA/2018 strain belonging to the Serotype 1 demonstrated the ability to infect and transmit in pigs without prior adaptation. Taken together, this is evidence for different genotypes and serotypes of MRVs circulating in US bats, which can be a mixing vessel of MRVs that may spread to other species, including humans, resulting in cross-species infections.


Assuntos
Quirópteros , Cervos , Orthoreovirus de Mamíferos , Orthoreovirus , Animais , Cães , Humanos , Bovinos , Estados Unidos , Suínos , Orthoreovirus de Mamíferos/genética , Filogenia , Furões
9.
J Vet Med Sci ; 85(2): 185-193, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36574999

RESUMO

Biosecurity enhancement contributes to the reduction of various microbial pathogens. Mammalian orthoreoviruses (MRVs) which are increasingly recognized as potentially serious problems on swine industry were used as indicators of biosecurity enhancement on two pig farms. Twelve MRVs were detected and isolated from fecal specimens of healthy pigs collected from one of the two farms in Japan. By sequencing based on the partial S1 gene, MRV isolates were classified as MRV1 and MRV2. Additionally, the virucidal activities of disinfectants toward the isolated MRV1 were evaluated using quaternary ammonium compound (QAC) diluted 500 times with water (QAC-500), 0.17% food additive glade calcium hydroxide (FdCa(OH)2) solution, QAC diluted with 0.17% FdCa(OH)2 solution (Mix-500), sodium hypochlorite at 100 or 1,000 parts per million (ppm) of total chlorine (NaClO-100 or NaClO-1000, respectively). To efficiently inactivate MRV1 (≥3 log10 reductions), 0.17% FdCa(OH)2, Mix-500 and NaClO-1000 required 5 min, whereas it took 30 min for QAC-500. The number of MRV detections has decreased over time, after using Mix-500 for disinfection on the positive farm. These results suggest that different serotypes of MRVs are circulating among pigs, and that the occurrence of MRVs in the farms decreased consequent to more effective disinfection.


Assuntos
Desinfetantes , Orthoreovirus de Mamíferos , Animais , Suínos , Desinfetantes/farmacologia , Orthoreovirus de Mamíferos/genética , Japão/epidemiologia , Hipoclorito de Sódio , Hidróxido de Cálcio , Compostos de Amônio Quaternário , Mamíferos
10.
Arch Virol ; 167(12): 2643-2652, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36114317

RESUMO

Mammalian orthoreoviruses (MRVs) are non-enveloped double-stranded RNA viruses with a broad host range. MRVs are prevalent worldwide, and in Japan, they have been isolated from various hosts, including humans, dogs, cats, wild boars, and pigs, and they have also been found in sewage. However, Japanese porcine MRVs have not been genetically characterized. While investigating porcine enteric viruses including MRV, five MRVs were isolated from the feces of Japanese pigs using MA104 cell culture. Genetic analysis of the S1 gene revealed that the Japanese porcine MRV isolates could be classified as MRV-2 and MRV-3. Whole genome analysis showed that Japanese porcine MRVs exhibited genetic diversity, although they shared sequence similarity with porcine MRV sequences in the DDBJ/EMBL/GenBank database. Several potential intragenetic reassortment events were detected among MRV strains from pigs, sewage, and humans in Japan, suggesting zoonotic transmission. Furthermore, homologous recombination events were identified in the M1 and S1 genes of Japanese porcine MRV. These findings imply that different strains of Japanese porcine MRV share a porcine MRV genomic backbone and have evolved through intragenetic reassortment and homologous recombination events.


Assuntos
Orthoreovirus de Mamíferos , Humanos , Suínos , Animais , Cães , Orthoreovirus de Mamíferos/genética , Filogenia , Fezes , Especificidade de Hospedeiro , Variação Genética , Mamíferos
11.
J Virol Methods ; 308: 114574, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35798198

RESUMO

Fluorescence-guided surgery (FGS) is a useful method for removing invasive tumor tissues. For this, near-infrared (NIR) fluorescence probes are suitable for visualizing cancer cells due to their low autofluorescence, and an oncolytic mammalian orthoreovirus (MRV) expressing an NIR fluorescent protein is expected to be a novel tool for FGS. In this study, we identified the optimal insertion site of the NIR fluorescent protein gene iRFP720 (915 nt) in the MRV genome. We constructed genome plasmids for the L1, M1, and S2 segments, where a gene cassette comprising iRFP720 and T2A self-cleaving peptide was inserted in the 5' or 3' region of each segment. Through virus recovery, the recombinant MRV with the gene cassette at the M1 segment's 3' end, T3D-L(M1/3'iRFP720), was capable of replication and passaging with bright NIR fluorescence. However, the replication of T3D-L(M1/3'iRFP720) was approximately 1,000-fold lower than that of the wild-type virus. T3D-L(M1/3'iRFP720) production improved due to the transfection of a fusion-associated small transmembrane protein gene of fusogenic reovirus. Further, fluorescence signals were detected in T3D-L(M1/3'iRFP720)-infected human gastric and pancreatic cancer cells. Thus, the M1 segment's 3' end tolerates the expression of the long iRFP720 gene, which may propel the development of recombinant MRV vectors for FGS.


Assuntos
Orthoreovirus de Mamíferos , Reoviridae , Animais , Humanos , Mamíferos/genética , Orthoreovirus de Mamíferos/genética , Plasmídeos , Reoviridae/genética , Transfecção
12.
Virology ; 571: 1-11, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35421704

RESUMO

Bats have recently been identified as potential reservoir hosts for mammalian orthoreoviruses (MRVs) throughout Europe and China. Here we present the first evolutionary and biological characterization of bat-borne MRVs in North America, including phylogenomic analysis, in vitro relative infectivity in bat and other mammalian cell cultures, host cell receptor specificity, and epifluorescence microscopy of viral factory formation. Through genetic and phylogenetic comparisons, we show that two divergent MRV serotype 2 (T2) strains - isolated from a silver-haired bat (Lasionycteris noctivagans) and a big brown bat (Eptesicus fuscus) from Pennsylvania, USA - provide an evolutionary link to an MRV strain (T2W) recovered from an 8-week-old infant who died in Winnipeg, Manitoba, Canada in 1997. Although these findings suggest North American bats may represent a previously unrecognized source for the cross-species transmission of MRVs to other animals, including humans, the ecology and epidemiology of MRVs in wildlife remain enigmatic.


Assuntos
Quirópteros , Orthoreovirus de Mamíferos , Animais , Animais Selvagens , Especificidade de Hospedeiro , Humanos , Orthoreovirus de Mamíferos/genética , Filogenia
13.
J Virol ; 96(4): e0183221, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34935439

RESUMO

Segmentation of viral genomes provides the potential for genetic exchange within coinfected cells. However, for this potential to be realized, coinfecting genomes must mix during the viral life cycle. The efficiency of reassortment, in turn, dictates its potential to drive evolution. The opportunity for mixing within coinfected cells may vary greatly across virus families, such that the evolutionary implications of genome segmentation differ as a result of core features of the viral life cycle. To investigate the relationship between viral replication compartments and genetic exchange, we quantified reassortment in mammalian orthoreovirus (reovirus). Reoviruses carry a 10-segmented, double-stranded RNA genome, which is replicated within proteinaceous structures termed inclusion bodies. We hypothesized that inclusions impose a barrier to reassortment. We quantified reassortment between wild-type (wt) and variant (var) reoviruses that differ by one nucleotide per segment. Studies of wt/var systems in both T1L and T3D backgrounds revealed frequent reassortment without bias toward particular genotypes. However, reassortment was more efficient in the T3D serotype. Since T1L and T3D viruses exhibit different inclusion body morphologies, we tested the impact of this phenotype on reassortment. In both serotypes, reassortment levels did not differ by inclusion morphology. Reasoning that the merging of viral inclusions may be critical for genome mixing, we then tested the effect of blocking merging. Reassortment proceeded efficiently even under these conditions. Our findings indicate that reovirus reassortment is highly efficient despite the localization of many viral processes to inclusion bodies, and that the robustness of this genetic exchange is independent of inclusion body structure and fusion. IMPORTANCE Quantification of reassortment in diverse viral systems is critical to elucidate the implications of genome segmentation for viral evolution. In principle, genome segmentation offers a facile means of genetic exchange between coinfecting viruses. In practice, there may be physical barriers within the cell that limit the mixing of viral genomes. Here, we tested the hypothesis that localization of the various stages of the mammalian orthoreovirus life cycle within cytoplasmic inclusion bodies compartmentalizes viral replication and limits genetic exchange. Contrary to this hypothesis, our data indicate that reovirus reassortment occurs readily within coinfected cells and is not strongly affected by the structure or dynamics of viral inclusion bodies. We conclude that the potential for reassortment to contribute to reovirus evolution is high.


Assuntos
Orthoreovirus de Mamíferos/genética , Vírus Reordenados/genética , Animais , Linhagem Celular , Genoma Viral/genética , Genótipo , Corpos de Inclusão Viral/ultraestrutura , Camundongos , Microtúbulos/metabolismo , Sorogrupo , Replicação Viral
14.
J Virol ; 96(2): e0187921, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34757847

RESUMO

Although a broad range of viruses cause myocarditis, the mechanisms that underlie viral myocarditis are poorly understood. Here, we report that the M2 gene is a determinant of reovirus myocarditis. The M2 gene encodes outer capsid protein µ1, which mediates host membrane penetration during reovirus entry. We infected newborn C57BL/6 mice with reovirus strain type 1 Lang (T1L) or a reassortant reovirus in which the M2 gene from strain type 3 Dearing (T3D) was substituted into the T1L genetic background (T1L/T3DM2). T1L was nonlethal in wild-type mice, whereas more than 90% of mice succumbed to T1L/T3DM2 infection. T1L/T3DM2 produced higher viral loads than T1L at the site of inoculation. In secondary organs, T1L/T3DM2 was detected with more rapid kinetics and reached higher peak titers than T1L. We found that hearts from T1L/T3DM2-infected mice were grossly abnormal, with large lesions indicative of substantial inflammatory infiltrate. Lesions in T1L/T3DM2-infected mice contained necrotic cardiomyocytes with pyknotic debris, as well as extensive lymphocyte and histiocyte infiltration. In contrast, T1L induced the formation of small purulent lesions in a small subset of animals, consistent with T1L being mildly myocarditic. Finally, more activated caspase-3-positive cells were observed in hearts from animals infected with T1L/T3DM2 than T1L. Together, our findings indicate that substitution of the T3D M2 allele into an otherwise T1L genetic background is sufficient to change a nonlethal infection into a lethal infection. Our results further indicate that T3D M2 enhances T1L replication and dissemination in vivo, which potentiates the capacity of reovirus to cause myocarditis. IMPORTANCE Reovirus is a nonenveloped virus with a segmented double-stranded RNA genome that serves as a model for studying viral myocarditis. The mechanisms by which reovirus drives myocarditis development are not fully elucidated. We found that substituting the M2 gene from strain type 3 Dearing (T3D) into an otherwise type 1 Lang (T1L) genetic background (T1L/T3DM2) was sufficient to convert the nonlethal T1L strain into a lethal infection in neonatal C57BL/6 mice. T1L/T3DM2 disseminated more efficiently and reached higher maximum titers than T1L in all organs tested, including the heart. T1L is mildly myocarditic and induced small areas of cardiac inflammation in a subset of mice. In contrast, hearts from mice infected with T1L/T3DM2 contained extensive cardiac inflammatory infiltration and more activated caspase-3-positive cells, which is indicative of apoptosis. Together, our findings identify the reovirus M2 gene as a new determinant of reovirus-induced myocarditis.


Assuntos
Proteínas do Capsídeo/metabolismo , Orthoreovirus Mamífero 3/patogenicidade , Miocardite/virologia , Infecções por Reoviridae/virologia , Animais , Animais Recém-Nascidos , Proteínas do Capsídeo/genética , Inflamação , Orthoreovirus Mamífero 3/genética , Orthoreovirus Mamífero 3/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miocardite/mortalidade , Miocardite/patologia , Orthoreovirus de Mamíferos/genética , Orthoreovirus de Mamíferos/metabolismo , Orthoreovirus de Mamíferos/patogenicidade , Infecções por Reoviridae/mortalidade , Infecções por Reoviridae/patologia , Carga Viral , Virulência , Replicação Viral
15.
Transbound Emerg Dis ; 69(2): 623-631, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33559313

RESUMO

Mammalian orthoreoviruses (MRVs) can infect many mammals including human, and numerous higher virulent MRVs have been reported in recent years. The first mink orthoreovirus was reported in China in 2011. In the present study, three new strains of mammalian orthoreoviruses were isolated from mink and found to be most closely related to human strain MRV2Tou05 and other human strains. Mink experiments demonstrated that the isolated mink reoviruses did not lead to severe pathogenicity. Viruses were eliminated within 2 weeks after infection, but they may cause viral enteritis disease in puppies.


Assuntos
Orthoreovirus de Mamíferos , Orthoreovirus , Animais , Cães , Vison , Orthoreovirus/genética , Orthoreovirus de Mamíferos/genética , Filogenia , Virulência
16.
Sci Rep ; 11(1): 12583, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131201

RESUMO

Mammalian orthoreovirus (MRV), a non-enveloped virus with a ten-segmented double-stranded RNA genome, infects virtually all mammals, including humans. Human infection with MRV seems to be common in early childhood, but is rarely symptomatic. Despite the ubiquitous presence of MRV in mammals as well as in environmental waters, the molecular characterisation of the MRV genome remains to be fully elucidated. In this study, two novel strains, MRV-2 THK0325 and MRV-1 THK0617, were unintentionally isolated from wastewater in Japan via an environmental surveillance of enteric viruses. Homology and phylogenetic analysis demonstrated that all the segments of THK0325 were closely related to the MRV-2 Osaka strains, which were recently proposed to have existed for at least two decades in Japan. Most of the segments in THK0617 also showed a close relationship with the MRV-2 Osaka strains, but the M2, S1, and S3 segments belong to another MRV cluster. According to the S1 sequence, the determinant of serotype THK0617 was classified as MRV-1, and both the M2 and S3 segments were closely related to MRV-1 and -3 from the tree shrew in China. These results suggest that the MRV-2 Osaka-like strain spread widely throughout Japan, accompanied by intertypic reassortment occurring in East Asia.


Assuntos
Orthoreovirus de Mamíferos/isolamento & purificação , Vírus Reordenados/isolamento & purificação , Doenças dos Suínos/virologia , Águas Residuárias/virologia , Animais , China/epidemiologia , Quirópteros/virologia , Fezes/virologia , Humanos , Orthoreovirus de Mamíferos/genética , Orthoreovirus de Mamíferos/patogenicidade , Filogenia , Vírus Reordenados/patogenicidade , Sorogrupo , Suínos/virologia , Doenças dos Suínos/epidemiologia
17.
Anticancer Res ; 41(5): 2431-2440, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33952468

RESUMO

BACKGROUND/AIM: Oncolytic reovirus, which is a non-enveloped virus possessing a 10-segmented double-stranded RNA genome, has been anticipated as a novel class of antitumor agent. Hepatocellular carcinoma (HCC) is considered to be a target suitable for reovirus-mediated virotherapy. Transforming growth factor (TGF)-ß plays an important role in the pathogenesis of HCC. TGF-ß-signaling inhibitors have proceeded to clinical trials as potential antitumor agents for HCC. On the other hand, TGF-ß is involved in induction of expression of cathepsins B and L, which are important for reovirus infection. It remains to be examined whether TGF-ß signaling inhibitors affect reovirus-mediated lysis of HCC cells. The aim of this study was to evaluate the effects of TGF-ß-signaling inhibitors on tumor cell lysis efficiency of reovirus in human HCC cells. MATERIALS AND METHODS: Reovirus was added to four types of human HCC cell lines pretreated with one of three TGF-ß type I receptor inhibitors: SB431542, A-83-01, or galunisertib (LY2157299). Cell viability, virus genome copy numbers, and virus protein expression were evaluated following reovirus infection. RESULTS: SB431542 significantly inhibited reovirus-mediated killing of human HCC cell lines, while A-83-01 and galunisertib did not inhibit. CONCLUSION: These data indicate that SB431542 inhibited reovirus-mediated lysis of human HCC cells in a TGF-ß signaling-independent manner.


Assuntos
Benzamidas/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Dioxóis/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Fator de Crescimento Transformador beta1/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Sobrevivência Celular/efeitos dos fármacos , Compostos de Epóxi , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Orthoreovirus de Mamíferos/efeitos dos fármacos , Orthoreovirus de Mamíferos/genética , Pirazóis/farmacologia , Quinolinas/farmacologia , RNA de Cadeia Dupla/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Tirosina/análogos & derivados , Tirosina/genética
18.
Emerg Microbes Infect ; 10(1): 1137-1147, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34018466

RESUMO

Mammalian orthoreovirus (MRV) infects multiple mammalian species including humans. A United States Midwest swine farm with approximately one thousand 3-month-old pigs experienced an event, in which more than 300 pigs showed neurological signs, like "down and peddling", with approximately 40% mortality. A novel MRV was isolated from the diseased pigs. Sequence and phylogenetic analysis revealed that the isolate was a reassortant virus containing viral gene segments from three MRV serotypes that infect human, bovine and swine. The M2 and S1 segment of the isolate showed 94% and 92% nucleotide similarity to the M2 of the MRV2 D5/Jones and the S1 of the MRV1 C/bovine/Indiana/MRV00304/2014, respectively; the remaining eight segments displayed 93%-95% nucleotide similarity to those of the MRV3 FS-03/Porcine/USA/2014. Pig studies showed that both MRV-infected and native contact pigs displayed fever, diarrhoea and nasal discharge. MRV RNA was detected in different intestinal locations of both infected and contact pigs, indicating that the MRV isolate is pathogenic and transmissible in pigs. Seroconversion was also observed in experimentally infected pigs. A prevalence study on more than 180 swine serum samples collected from two states without disease revealed 40%-52% positive to MRV. All results warrant the necessity to monitor MRV epidemiology and reassortment as the MRV could be an important pathogen for the swine industry and a novel MRV might emerge to threaten animal and public health.


Assuntos
Orthoreovirus de Mamíferos/classificação , RNA Viral/genética , Infecções por Reoviridae/veterinária , Análise de Sequência de RNA/métodos , Animais , Bovinos , Cães , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células Madin Darby de Rim Canino , Orthoreovirus de Mamíferos/genética , Orthoreovirus de Mamíferos/isolamento & purificação , Filogenia , Vírus Reordenados/classificação , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Infecções por Reoviridae/sangue , Suínos , Estados Unidos
19.
Viruses ; 13(2)2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670092

RESUMO

De novo viral protein synthesis following entry into host cells is essential for viral replication. As a consequence, viruses have evolved mechanisms to engage the host translational machinery while at the same time avoiding or counteracting host defenses that act to repress translation. Mammalian orthoreoviruses are dsRNA-containing viruses whose mRNAs were used as models for early investigations into the mechanisms that underpin the recognition and engagement of eukaryotic mRNAs by host cell ribosomes. However, there remain many unanswered questions and paradoxes regarding translation of reoviral mRNAs in the context of infection. This review summarizes the current state of knowledge about reovirus translation, identifies key unanswered questions, and proposes possible pathways toward a better understanding of reovirus translation.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Orthoreovirus de Mamíferos/genética , Orthoreovirus de Mamíferos/fisiologia , Biossíntese de Proteínas/genética , Replicação Viral/fisiologia , Animais , Humanos , RNA Viral/genética , Infecções por Reoviridae/patologia , Ribossomos/metabolismo , Proteínas Virais/genética
20.
Virus Res ; 296: 198334, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33581186

RESUMO

The intestinal mucosa plays an important role as an immune barrier due to its continual exposure to invading pathogens, including viruses. It is thus highly important to evaluate virus infection profiles in the intestinal mucosa for prevention of virus infection and development of antivirus medicines; however, only a few enterocyte lines are available as in vitro intestinal models for the evaluation of virus infection. In this study, we evaluated profiles of infection and innate immune responses following infection with a mammalian orthoreovirus (hereafter reovirus), which has often been used as a tractable model for studies of viral pathogenesis, in human iPS cell-derived small intestinal epithelial-like cell (hiPS-SIEC) monolayers and cells of a human colon adenocarcinoma cell line, Caco-2. The levels of reovirus infection were similar between hiPS-SIEC and Caco-2 cell monolayers, which are often used as an intestinal model, after apical and basolateral infection. In hiPS-SIEC monolayers, more efficient replication of the virus genome was observed following basolateral infection than apical infection, while apical infection resulted in higher levels of virus protein expression and progeny virus production than basolateral infection. Reovirus significantly induced innate immune responses, including expression of type I and III interferons (IFNs), in hiPS-SIEC monolayers more efficiently than Caco-2 cells. Higher levels of type I and III interferon (IFN) expression were found in hiPS-SIEC monolayers following apical infection than basolateral infection. These results suggested that hiPS-SIECs are a promising in vitro model for the evaluation of virus infection.


Assuntos
Células-Tronco Pluripotentes Induzidas , Orthoreovirus de Mamíferos , Orthoreovirus , Reoviridae , Viroses , Animais , Células CACO-2 , Humanos , Imunidade Inata , Interferons , Mamíferos , Orthoreovirus de Mamíferos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...